
CUDA Cuts: Fast Graph Cuts on the GPU

Vibhav Vineet and P. J. Narayanan

Centre for Visual Information Technology

International Institute of Information Technology

Hyderabad, 500032. India

{vibhavvinet@students.,pjn@}iiit.ac.in

Abstract

Graph cuts has become a powerful and popular opti-

mization tool for energies defined over an MRF and have

found applications in image segmentation, stereo vision,

image restoration, etc. The maxflow/mincut algorithm to

compute graph-cuts is computationally heavy. The best-

reported implementation of graph cuts takes over 100 mil-

liseconds even on images of size 640×480 and cannot be
used for real-time applications or when iterated applica-

tions are needed. The commodity Graphics Processor Unit

(GPU) has emerged as an economical and fast computation

co-processor recently. In this paper, we present an imple-

mentation of the push-relabel algorithm for graph cuts on

the GPU. We can perform over 60 graph cuts per second

on 1024×1024 images and over 150 graph cuts per second
on 640×480 images on an Nvidia 8800 GTX. The time for
each complete graph-cut is about 1 millisecond when only a

few weights change from the previous graph, as on dynamic

graphs resulting from videos. The CUDA code with a well-

defined interface can be downloaded for anyone’s use.

1. Introduction

Graph cuts have found applications in a large range of

Computer Vision problems as a tool to find the optimal

MAP estimation of images defined over an MRF lattice.

Though the mincut/maxflow algorithm was introduced into

Computer Vision early [17, 14], their potential was ex-

ploited only after the work of Boykov et al. [5, 6] and their

characterization of functions that can be optimized using

graph cuts [25]. Graph-cuts have since then been applied

to several Computer Vision problems like image and video

segmentation [29, 27], stereo and motion [5, 31], multi-

camera scene reconstruction [24, 20], etc. Kolmogorov and

Zabih characterized the energy functions which can be min-

imized via graph cuts [25].

Improving the computational performance of the

maxflow algorithm has also been an active area of re-

cent research. Boykov and Kolmogorov presented an al-

gorithm to reuse the search trees [4]. Dynamic graph cut

reparametrizes the graph and reuses the residual flow when

only a few weights change from one minimization to the

next [22, 23]. They could compute the graph cut on a new

frame of a video in about 70 milliseconds by starting with

the residual flow of the previous frame [23]. Active graph

cuts, reuse the st-mincut solution corresponding to the pre-

vious MRF instance to generate the initialization for the

next MRF [21]. The best implementation of it takes about

100 milliseconds on a 512×512 image.

The contemporary graphics processor unit (GPU) has

huge computation power and can be very efficient on many

data-parallel tasks. They have recently been used for many

non-graphics applications [16] and many in Computer Vi-

sion. OpenVidia [13] is an open source package that im-

plements different computer vision algorithms on the GPUs

using OpenGL and Cg. Sinha et al. implemented a feature

based tracker to the GPU [30]. SiftGPU implements the

SIFT descriptor on the GPU [32]. The GPU, however, has

had a difficult programming model that followed the tradi-

tional graphics pipeline. This made it difficult to implement

general graph algorithms on them.

The potential of the GPU for non-graphic applications

has resulted in more traditional parallel programming in-

terfaces that treat the GPUs as massively parallel co-

processors. The Compute Unified Device Architecture

(CUDA) from Nvidia [9] and the Close-To-Metal (CTM)

from ATI/AMD [8] are such interfaces for modern GPUs.

These enable the acceleration of algorithms on irregular

graphs [18] and other application involving graphs.

We present a fast implementation of the push-relabel al-

gorithm formincut/maxflowalgorithm for graph-cuts in this

paper using CUDA. Our implementation of the basic graph-

cut can perform over 60 graph-cuts per second on images

of size 1024×1024 and over 150 graph-cuts per second on
images of size 640× 480 on an Nvidia 8800 GTX GPU.
Each graph cut can be computed in about 1 millisecond on

978-1-4244-2340-8/08/$25.00 ©2008 IEEE

images on dynamic graphs arising from videos. A shader

based early implementation of graph cuts on the GPU was

even slower than the CPU implementation [10]. Hussein et

al. [19] report an implementation of the push-relabel algo-

rithm on CUDA. They achieve a speedup of only 2-4.5 over

the CPU implementation with a running time of 100 mil-

liseconds per frames with a million pixels, as opposed to 6

milliseconds by our implementation.

Section 2 describes the GPU architecture as exposed by

the CUDA programmingmodel. Section 3 describes the the

GPU implementation of the basic push-relabel algorithm

for graph cuts. Section 4 presents the experimental results.

Some concluding remarks and directions for futurework are

given in Section 5.

2. Compute Unified Device Architecture

General purpose programming on graphics processing

units (GPGPU) tries to solve a problem by posing it as a

graphics rendering problem, restricting the range of solu-

tions that can be ported to the GPU. The GPU memory lay-

out is optimized for graphics rendering. This restricts the

GPGPU solutions as an optimal data structure may not be

available. The GPGPUmodel provides limited autonomy to

individual processors [28]. Creating efficient data structures

using the GPU memory model is a challenging problem in

itself [26]. Memory size on GPU is another restricting fac-

tor. A single data structure on the GPU cannot be larger

than the maximum texture size supported by it.

CUDA is a programming interface to use the parallel ar-

chitecture of Nvidia GPUs for general purpose computing.

CUDA produces a set of library functions as extensions of

the C language. A compiler generates executable code for

the CUDA device. The CPU sees a CUDA device as a

multi-core co-processor. All memory available on the de-

vice can be accessed using CUDA with no restrictions on

its representation though the access times vary for different

types of memory. This enhancement in the memory model

allows programmers to better exploit the parallel power of

the GPU for general purpose computing.

2.1. CUDA Hardware Model

At the hardware level, the GPU is a collection of multi-

processors, with several processing elements in each (Fig-

ure 1). For instance, the Nvidia 8800 GTX has 16 multi-
processors with 8 processing elements in each. Each multi-
processor has 16 KB of common shared memory accessible

to all processors inside it. It also has a set of 32-bit regis-

ters, texture, and constant memory caches. Each processor

in the multiprocessor executes the same instruction in ev-

ery cycle. Each can operate on its own data, which makes

each a SIMD processor. Communication between multipro-

cessors is only through the device memory, which is avail-

able to all the processors of the multiprocessors. The pro-

cessing elements of a multiprocessor can synchronize with

one another, but there is no direct synchronization mecha-

nism between the multiprocessors. The GPUs provides only

single-precision floating point numbers and 32-bit integers

on native numeric data types, though this may change in

near future.

Figure 1. CUDA hardware model (top) and programming model

(bottom) for Nvidia 8800 GTX

2.2. CUDA Programming Model

For the programmer, the CUDA consists of a collection

of threads running in parallel. A warp is a collection of

threads that are scheduled for execution simultaneously on

a multiprocessor. The warp size is fixed for a specific GPU.

The programmer can select the number of threads to be ex-

ecuted. If the number of threads is more than the warp size,

they are time-shared internally on the multiprocessor. A

collection of threads called a block runs on a multiprocessor

at a given time. Multiple blocks can be assigned to a sin-

gle multiprocessor for time-shared execution. They also di-

vide the common resources like registers and shared mem-

ory equally among them. A single execution on a device

generates a number of blocks. The collection of all blocks

in a single execution is called a grid (Figure 1). Each thread

and block is given a unique ID that can be accessed within

the thread during its execution. All threads of the grid exe-

cute a single program called the kernel.

The kernel is the core code to be executed on each thread.

Using the thread and block IDs, each thread can perform the

kernel task on different data. Since the device memory is

available to all the threads, it can access any memory loca-

tion. The CUDA programming interface presents a Parallel

Random Access Machine (PRAM) architecture, if one uses

the device memory alone. The performance improves with

the use of shared memory which can be accessed in a single

clock cycle. In contrast, the global or device memory access

takes 200-400 cycles. Read only texture memory optimized

for 2-D texture fetch and constant memory assigned by the

CPU are also available. Their access is slow but the internal

caching mechanism reduces the effective access times for

coherent access. The hardware architecture allows multiple

instruction sets to be executed on different multiprocessors.

The current CUDA programming model, however, cannot

assign different kernels to different multiprocessors, though

this may be simulated using conditionals.

The Nvidia 8800 GTX graphics card has 768 MB mem-

ory. Large images can reside in this memory, given a suit-

able representation. The problem needs to be partitioned

appropriately into multiple grids for handling even larger

images and graphs.

3. GPU Graph Cuts

The mincut/maxflowalgorithm tries to find theminimum

cut in a graph that separates two designated nodes, namely,

the source s and the target t. The mincut minimizes the

energy of an MRF defined over the image lattice when a

discontinuity preserving energy function is used [25]. The

energy function used has the following form:

E(f) =
∑

p,q∈N

Vp,q(fp, fq) +
∑

p∈P

Dp(fp), (1)

where,Dp is the data energy, Vp,q is the smoothness energy,

N the neighbourhood in the MRF, fp is the label assigned

to the pixel p, and P are all pixels of the lattice.

Two algorithms are popular to compute the min-

cut/maxflow on graphs. The first one, due to Ford and Fulk-

erson [12] and modified by Edmonds and Karp [11], repeat-

edly computes augmenting paths from source s to target t in

the graph through which flow is pushed until no augment-

ing path can be found. The second algorithm, by Goldberg

and Tarjan [15], works by pushing flow from s to t with-

out violating the edge capacities. Rather than examining

the entire residual network to find an augmenting path, the

push-relabel algorithm works locally, looking at each ver-

tex’s neighbors in the residual network. There are two basic

operations in a push-relabel algorithm: pushing excess flow

from a vertex to one of its neighbors and relabelling a ver-

tex. The algorithm is sped up in practice by periodically

relabelling the vertexes using a global relabelling procedure

or a gap relabelling procedure [7].

The sequential implementation of graph cuts by Boykov

and others follow the Edmonds-Karp algorithm which re-

peatedly finds the shortest path from the source to the target

using a breadth-first search (BFS) step, which is not eas-

ily parallelizable. The push-relabel algorithm was paral-

lellized by Anderson and Setubal [2]. Bader and Sachdeva

later produced a cache-aware optimization of it [3]. The tar-

get architecture is a cluster of symmetric multi-processors

(SMPs) having from 2 to over 100 processors per node. Al-

izadeh and Goldberg [1] present a parallel implementation

on a massively parallel Connection Machine CM-2. Two

attempts to implement this algorithm on the GPU have also

been reported [10, 19]. We implement the push-relabel al-

gorithm on the GPU using CUDA.

3.1. Push­Relabel Algorithm

Let G = (V, E) be the graph and s, t be the source

and target nodes. The push-relabel algorithm constructs and

maintains a residual graph at all times. The residual graph

Gf of the graph G has the same topology, but consists of

the edges which can admit more flow. The residual capac-

ity cf (u, v) = c(u, v)− f(u, v) is the amount of additional
flow which can be sent from u to v after pushing f(u, v),
where c(u, v) is the capacity of the edge (u, v). The push-
relabel algorithm maintains two quantities: the excess flow

e(v) at every vertex and the height h(v) for all vertexes
V

′

= V ∪ {s, t} with h(s) = n and h(t) = 0. The excess
flow e(v) ≥ 0 is the difference between the total incoming
and outgoing flows at node v through its edges. The height

h(v), is a conservative estimate of the distance of vertex v

from the target t. Initially all the vertexes have a height of

0 except for the source s which has a height n = |V |, the
number of nodes in the graph.

Computation proceeds in terms of two operations. The

push operation can be applied at a vertex u if e(u) > 0 and
its height h(u) is equal to h(v) + 1 for at least one neigh-
bour (u, v) ∈ Ef . After the push, either vertex u is satu-

rated (i.e., e(u) = 0) or the edge (u, v) is saturated (i.e.,
cf (u, v) = 0). The relabel operation is applied at a vertex u

if it has positive excess flow but no push is possible to any

neighbour due to height mismatch. The height of u is in-

creased in the relabelling step by setting it to one more than

the minimum height of its neighbouring nodes. Global rela-

belling needs a BFS to correctly assign the distances to the

target. Gap relabelling needs to find any gaps in the height

values in the entire graph. Both are expensive operations

and are performed only infrequently. The algorithm stops

when neither push nor relabelling can be applied. The ex-

cess flows in the nodes are then pushed back to the source

and the saturated nodes of the final residual graph gives the

mincut.

3.2. Push­Relabel Algorithm on CUDA

The CUDA environment exposes the SIMD architecture

of the GPUs by enabling the operation of program kernels

on data grids, divided into multiple blocks consisting of sev-

eral threads. The highest performance is achieved when

the threads avoid divergence and perform the same opera-

tion on their data elements. The GPU architecture cannot

lock memory; synchronization is limited to the threads of a

block. This places restrictions on how modifications by one

thread can be seen by other threads.

Our implementation of the push-relabel algorithm uses

four kernels. The Push kernel pushes excess flow at each

node to its neighbours and the Pull kernel updates the net

excess flow at each node. The Local Relabel kernel applies

a local relabelling operation to adjust the heights as stipu-

lated by the algorithm. The Global Relabel kernel runs a

BFS from the target t and updates the heights of all nodes

to the correct distances.

Our implementation exploits the structure of the grid-

graph that arise for MRFs over images, where each pixel

corresponds to a node and the connectivity is fixed to its 4-

neighbours or 8-neighbours. Different strategies will have

to be adopted for general graphs represented using adja-

cency list or adjacency matrix. The grid has the dimensions

of the image and is divided into B×B blocks. Each thread

handles a single node or pixel. Thus, a block handles B2

pixels and needs to access data from a (B + 2)×(B + 2)
section of the image. Each node has the following data: its

excess flow e(u), height h(u), an active status flag(u) and
the edge capacities to its neighbours. These are stored as

appropriate-sized arrays in the global or device memory of

the GPU, which is accessible to all threads.

Push Kernel: A node can be active, passive, or inac-

tive. Active nodes have the excess flow e(u) > 0 and
h(u) = h(v) + 1 for at least one neighbour v. Passive

nodes do not satisfy the height condition, but may do so af-

ter relabeling. If a node has no excess flow or has no neigh-

bour in the residual graph Gf , it becomes inactive. The

kernel first copies the h(u) and e(u) values of all nodes in

a thread-block to the shared memory of the GPU’s multi-

processor. Since these values are needed by all neighbour

threads, storing them in the shared memory speeds up the

operation overall.

Push is a local operation with each node sending flow

to its neighbours and reducing own excess flow. A node

can receive flow from its neighbours also. Thus, the net

excess flow cannot be updated in one step due to the read-

after-write data consistency issues. We divide the operation

into two kernels, with the push kernel doing computing the

changes in edge weights and the pull kernel subsequently

updating each node’s net excess flow. The push kernel up-

dates the edge-weights of the possible edges (u, v) ∈ Ef

and the excess flow e(u) of itself. Another option could
be to combine the two kernels with the results of push kept

in the shared memory to be used for pull in another part

of the kernel. However, the nodes on the border of blocks

will need results from other blocks. This cannot be done

correctly as CUDA doesn’t allow synchronization between

blocks. The thread for node u of the kernel does the follow-

ing.

PushKernel (node u)
1. Load h(u) and e(u) from the global memory to the
shared memory of the block.

2. Synchronize threads (ensure completion of load).

3. Push e(u) to eligible neighbours without violating the
residual capacity of the edges.

4. Store the flow pushed to each edge in a special global

memory array F .

s

t

Figure 2. A 4×4 grid graph. Push kernel pushes flow along edges

and pull kernel takes them into each node.

Pull Kernel: In the pull phase, a node receives all flow

pushed to it in the previous step and computes its net excess

flow. The kernel does the following.

PullKernel (node u)

1. Read the flow pushed to u from the F array of its

neighbours.

2. Compute the final excess flow by aggregating all in-

coming flows. Store it as the e(u) value in the global
memory.

Figure 2 shows the basic Push and Pull operations. It

shows an active vertex which pushes flow to all its neigh-

bours, indicated using outgoing arrows. Similarly, a vertex

in the pull phase updates its excess flow (shown with ar-

rows coming in) by receiving flows from its neighbours and

aggregating the net excess.

Local Relabel Kernel: The local relabelling step replaces

the height of a node with 1 more than the minimum of the

heights of its active or passive neighbours. This operation

reads the heights of neighbouring nodes from the global

memory and writes the new height value to the global mem-

ory. After the relabel operation, many passive nodes be-

come active. The thread for node u of the kernel does the

following.

RelabelKernel (node u)

1. Load h(u) and flag(u) from the global memory to the
shared memory of the block.

2. Synchronize threads (ensure completion of load).

3. Compute the minimum height of active or passive

neighbours of u.

4. Write the new height to global memory loication h(u).

Global Relabel Kernel: The local relabelling step ad-

justs the heights based only on the local information. The

true distance to the target node t can be computed using a

Breadth First Search on the graph starting from t. For BFS,

the t node is assigned a height of 0. In each iteration, each

node looks at the minimum height of all its neighbours and

sets own height as one more than that. The updation is done

in parallel in each iteration. The kernel is invoked with the

iteration number k = 1, 2, . . . and the partial results are

stored in the global memory. The thread for node u of the

kernel does the following for iteration k.

GlobalRelabelKernel (node u, iteration k)

1. If k = 1, all pixel nodes with non-zero residual capac-
ity to t are assigned a height of 1.

2. Every unassigned node assigns itself a height of k + 1
if any of its neighbours have a height of k.

3. Update the new height values in the global memory

array.

m k Number Time

of Pulses (in ms)

1 - 28 4.5

2 - 23 5.2

3 - 23 7.3

1 1 17 6.7

2 1 17 9.2

1 4 20 4.1

1 6 20 3.9

2 4 19 5.9

Table 1. Results for different m and k values. The algorithm per-

forms m push/pull operations followed by a local relabelling per

pulse. A global relabelling is done every k pulses. No global rela-

belling is used in the top 3 cases.

Overall Graph Cuts Algorithm: The overall algorithm

applies the above steps in sequence, as follows. The CUDA

grid has the same dimensions as the image, say,M×N . The

CUDA block size is B×B, with B2 threads in each.

GPUGraphCuts ()

1. Compute the edge weights and energies from the un-

derlying image.

2. Invoke PushKernel() followed by PullKernel() on the

whole grid.

3. Repeat step 2 form times.

4. Invoke RelabelKernel() on the grid.

5. Repeat steps 2 to 4 for k times.

6. Apply GlobalRelabelKernel() on the grid.

7. Repeat steps 2 to 6 until convergence.

The computation terminates when no push or relabeling

operation is possible.

Efficiency Considerations: The regular connectivity of

the grid graphs results in efficient memory access patterns

from the global memory as well as from the shared memory.

The use of shared memory in PushKernel() and RelabelK-

ernel() speeds up the operations by a factor of 25% . The

binary segmentation of the flower image of size 600x450

takes almost 6.5 ms using the global memory access while

it takes 4.9 ms with the shared memory access, as the global

memory access is 200-400 times slower than shared mem-

ory access. The speedup is low because of the overhead

of loading data into the shared memory and the thread syn-

chronization. We use a logical OR of the active bit of each

node to check the termination condition. Logical OR is

evaluated by all active nodes writing a 1 to a common global
memory location. Though CUDA model doesn’t guarantee

an order of execution, OR can be computed even if any one

succeeds. We also use 2D texture memory to store read-

only data, such as the data-cost, the smoothness-cost and

Reparameterization
Reparameterization

Source
Source Source

Sink Sink

Sink

st−cut
st−cut st−cut

2

4
4

9
2

5

1

2

2
9

4

2

1

5

+

+ k

k

1−k

2+k

9+k

5+k

Figure 3. The graph reparameterization scheme for change in weights [23]

the intensity values of the pixels, for edge-weight calcula-

tions. The texture memory access is cached. This results in

a typical improvement in speed of 50% . The edge-weight

calculation for an image of size 600×450 takes 0.07 ms us-
ing the texture memory whereas it takes almost 0.12 ms for

the same using the global memory access.

The push-relabel algorithm can perform multiple pushes

before attempting any relabelling. The global relabelling

is performed only occasionally. Table 1 gives the results

for varyingm and k of GPUGraphCuts() procedure on the

Liberty-Bell image. The combination of a local relabelling

after each push/pull and a global relabelling after six such

pulses seems to do the best. More frequent global rela-

belling results in fewer overall pulses, but takes more time

due to the slower BFS operation. The use of gap relabelling

in combination with local and global relabelling resulted in

very poor performance. This because the operation of iden-

tifying and counting the gaps in labels is not efficient on the

SIMD architecture of the GPUs.

3.3. Dynamic Graph Cuts

Repeated application of graph cuts on graphs for which

only a few edges change weights is useful in applications

like segmenting frames of a video. Kohli and Torr describe

a reparametrization of the graph that maintains the flow

properties even after updating the weights of a few edges

[23]. The resulting graph is close to the final residual graph

and its mincut can be computed in a small number of itera-

tions.

The final graph of the push-relabel method and the final

residual graph of the Ford-Fulkerson’s method are same.

So, we adapt the reparametrization scheme to the leftover

flow that remains after the push-relabel algorithm. Updation

and reparameterization are two basic operations involved in

the dynamic graph cuts (Figure 3). These operations assign

new weights/capacities as a modification of the final graph

without violating any constraints.

4. Experimental Results

The CUDA Cuts algorithm was tested on several stan-

dard images. The running time also depends on the number

of threads per block as that determines the level of paral-

lelism. We experimented with different numbers of threads

per block. A block size of B = 16 threads gives the best
results with 256 threads per block. Each thread uses 14 reg-

isters for Push and Pull kernels and 15 registers for the Rela-

bel kernel. An image of size 600×450 takes 5.7 milliseconds

Figure 4. Binary Image Segmentation: Person, Sponge, Flower,

and Synthetic images

Image Size Time (ms) Time (ms)

Boykov CUDA Cuts

Person 600×450 140 4.86

Sponge 640×480 142 5.76

Flower 600×450 188 4.98

Synthetic 1K×1K 655 16.5

Table 2. Comparison of running times of CUDA implementation

with that of Boykov on different images

with a block size of 512 threads and 4.9 ms with a block size

of 256 threads.

We tested our implementations on various real and syn-

thetic images. Figure 4 shows the results of image segmen-

tation using our implementation of the algorithm on the Per-

son image, Sponge image and the Flower image. It also

shows the results of image segmentation using our imple-

mentation of the algorithm on a noisy synthetic image. The

energy terms used are the same as those given in the Mid-

dlebury MRF page [31]. The running times for these are

tabulated in Table 2 along with the time for Boykov’s se-

quential implementation of graph cuts. The reported times

of the GPU algorithm includes the time to compute the edge

weights. Figure 5 plots the running times on a noisy syn-

thetic image of CUDA Cuts and the sequential graph cuts

for different image sizes. The GPU implementation is faster

by factor of 100 or better. This is about 8-10 times fraster

than the previous best implementation on the GPU by Hus-

sein et al. [19].

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

4

6

8

10

12

14

16

18

20

22

24

Number of Pixels

ti
m

e
 i
n

 m
s

CUDA in ms

BK in 100s of ms

Figure 5. Comparing the running times of graph cuts on the GPU

and the CPU for synthetic images. The GPU implementation is

over 100 times faster.

Figure 6 shows the results of independent segmentation

of the frames of a video using our implementation of dy-

namic graph cuts. The frame-to-frame change in weights is

computed for each edge first and the final graph from the

previous iteration is reparametrized using the changes. The

Figure 6. Frames of a video segmented using dynamic cuts

CUDA implementation of the dynamic graph cuts is effi-

cient and fast. It finds the pixels which change their labels

with respect to the previous frame. This operation is per-

formed in kernel in parallel. The two basic operations, up-

dation and reparameterizations, are performed by this ker-

nel. So, the maxflow algorithm terminates quickly on them,

giving a running time of less than 1 millisecond per frame.

The running time depends on the percentage of weights that

changed.

5. Conclusions and Future Work

In this paper, we presented an implementation of graph-

cuts on GPU using CUDA architecture. We used the push-

relabel algorithm for mincut/maxflow as it is more paral-

lelizable. Periodic global relabelling improves the running

time. We carefully divide the task among the multiproces-

sors of the GPU and exploit its shared memory for high

performance. We perform over 150 graph cuts per second

on 640×480 images. This is 30-40 times faster than the
best sequential algorithm reported. We can process dynamic

graphs in under a millisecond per frame, 70-100 times faster

than the best sequential algorithm. More importantly, since

a graph cut takes only 5 or 6 milliseconds, it can be applied

multiple times on each image if necessary, without violat-

ing real-time performance. The code is available from our

webpage and other relevant resources for download and use

by other researchers. We are currently working on imple-

menting multilabel graph cuts onto the GPU using a similar

strategy.

Acknowledgements: We gratefully acknowledge the con-

tributions of Nvidia through generous equipment donations.

References

[1] F. Alizadeh and A. Goldberg. Implementing the push-

relabel method for the maximum flow problem on a

connection machine. Technical Report STAN-CS-92-

1410, Stanford University, 1992.

[2] R. J. Anderson and J. C. Setubal. On the parallel im-

plementation of goldberg’s maximum flow algorithm.

In SPAA, pages 168–177, 1992.

[3] D. A. Bader and V. Sachdeva. A cache-aware paral-

lel implementation of the push-relabel network flow

algorithm and experimental evaluation of the gap rela-

beling heuristic. In ISCA PDCS, pages 41–48, 2005.

[4] Y. Boykov and V. Kolmogorov. An experimental com-

parison of min-cut/max-flow algorithms for energy

minimization in vision. IEEE Trans. Pattern Anal.

Mach. Intell., 26(9):1124–1137, 2004.

[5] Y. Boykov, O. Veksler, and R. Zabih. Markov random

fields with efficient approximations. In CVPR, pages

648–655, 1998.

[6] Y. Boykov, O. Veksler, and R. Zabih. Fast approxi-

mate energyminimization via graph cuts. IEEE Trans.

Pattern Anal. Mach. Intell., 23(11):1222–1239, 2001.

[7] B. V. Cherkassky and A. V. Goldberg. On implement-

ing push-relabel method for the maximum flow prob-

lem. In IPCO, pages 157–171, 1995.

[8] A. Corporation. Ati ctm (close to metal) guide. Tech-

nical report, AMD/ATI, 2007.

[9] N. Corporation. Cuda: Compute unified device archi-

tecture programming guide. Technical report, Nvidia,

2007.

[10] N. Dixit, R. Keriven, and N. Paragios. GPU-cuts:

Combinatorial optimisation, graphic processing units

and adaptive object extraction. Technical report, CER-

TIS, 2005.

[11] J. Edmonds and R. M. Karp. Theoretical improve-

ments in algorithmic efficiency for network flow prob-

lems. J. ACM, 19(2):248–264, 1972.

[12] L. R. Ford and D. R. Fulkerson. Flows in Networks.

Princeton Univ. Press, NJ, 1962.

[13] J. Fung, S. Mann, and C. Aimone. OpenVidia: Parallel

GPU computer vision. In Proc of ACM Multimedia

2005, pages 849–852, 2005.

[14] S. Geman and D. Geman. Stochastic relaxation, gibbs

distributions, and the bayesian restoration of images.

IEEE Trans. Pattern Anal. Mach. Intell., 6:721–741,

1984.

[15] A. V. Goldberg and R. E. Tarjan. A new approach to

the maximum-flow problem. J. ACM, 35(4):921–940,

1988.

[16] N. K. Govindaraju. GPUFFTW: High performance

GPU-based fft library. In Supercomputing, 2006.

[17] D. Greig, B. Porteous, and A. Seheult. Exact max-

imum a posteriori estimation for binary images. J.

Royal Statistical Society., Series B, 51(2):271–279,

1989.

[18] P. Harish and P. J. Narayanan. Accelerating large

graph algorithms on the GPU using CUDA. In Intnl.

Conf. on High Performance Computing (HiPC), LNCS

4873, pages 197–208, December 2007.

[19] M. Hussein, A. Varshney, and L. Davis. On imple-

menting graph cuts on cuda. In First Workshop on

General Purpose Processing on Graphics Processing

Units. Northeastern University, October 2007.

[20] H. Ishikawa and D. Geiger. Occlusions, discontinu-

ities, and epipolar lines in stereo. In ECCV (1), pages

232–248, 1998.

[21] O. Juan and Y. Boykov. Active graph cuts. In CVPR

(1), pages 1023–1029, 2006.

[22] P. Kohli and P. H. S. Torr. Effciently solving dynamic

markov random fields using graph cuts. In ICCV,

pages 922–929, 2005.

[23] P. Kohli and P. H. S. Torr. Dynamic graph cuts for effi-

cient inference in markov random fields. IEEE Trans.

Pattern Anal. Mach. Intell., 29(12):2079–2088, 2007.

[24] V. Kolmogorov and R. Zabih. Computing visual cor-

respondence with occlusions via graph cuts. In ICCV,

pages 508–515, 2001.

[25] V. Kolmogorov and R. Zabih. What energy functions

can be minimized via graph cuts? IEEE Trans. Pattern

Anal. Mach. Intell., 26(2):147–159, 2004.

[26] A. E. Lefohn, S. Sengupta, J. Kniss, R. Strzodka, and

J. D. Owens. Glift: Generic, efficient, random-access

GPU data structures. ACM Trans. Graph., 25(1):60–

99, 2006.

[27] Y. Li, J. Sun, and H.-Y. Shum. Video object cut and

paste. ACM Trans. Graph., 24(3), 2005.

[28] P. J. Narayanan. Processor Autonomy on SIMD Ar-

chitectures. In Proceedings of the Seventh Interna-

tional Conference on Supercomputing, pages 127–

136, 1993.

[29] C. Rother, V. Kolmogorov, and A. Blake. Grabcut:

interactive foreground extraction using iterated graph

cuts. ACM Trans. Graph., 23(3):309–314, 2004.

[30] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc.

Feature tracking and matching in video using graphics

hardware. In Proc of Machine Vision and Applica-

tions, 2006.

[31] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler,

V. Kolmogorov, A. Agarwala, M. F. Tappen, and

C. Rother. A comparative study of energy minimiza-

tion methods for markov random fields. In ECCV (2),

pages 16–29, 2006.

[32] C. Wu and M. Pollefeys. Siftgpu library. Technical

Report http://cs.unc.edu/ ccwu/siftgpu/, UNC, Chapel

Hill, 2005.

